Fuzzy group based on fuzzy binary operation
نویسندگان
چکیده
منابع مشابه
designing unmanned aerial vehicle based on neuro-fuzzy systems
در این پایان نامه، کنترل نرو-فازی در پرنده هدایت پذیر از دور (پهپاد) استفاده شده است ابتدا در روش پیشنهادی اول، کنترل کننده نرو-فازی توسط مجموعه اطلاعات یک کنترل کننده pid به صورت off-line آموزش دیده است و در روش دوم یک کنترل کننده نرو-فازی on-line مبتنی بر شناسایی سیستم توسط شبکه عصبی rbf پیشنهاد شده است. سپس کاربرد این کنترل کننده در پهپاد بررسی شده است و مقایسه ای ما بین کنترل کننده های معمو...
A fuzzy reasoning method based on compensating operation and its application to fuzzy systems
In this paper, we present a new fuzzy reasoning method based on the compensating fuzzy reasoning (CFR). Its basicidea is to obtain a new fuzzy reasoning result by moving and deforming the consequent fuzzy set on the basis of themoving, deformation, and moving-deformation operations between the antecedent fuzzy set and observation information.Experimental results on real-world data sets show tha...
متن کاملMultiplication Operation on Fuzzy Numbers
A fuzzy number is simply an ordinary number whose precise value is somewhat uncertain. Fuzzy numbers are used in statistics, computer programming, engineering, and experimental science. The arithmetic operators on fuzzy numbers are basic content in fuzzy mathematics. Operation of fuzzy number can be generalized from that of crisp interval. The operations of interval are discussed. Multiplicatio...
متن کاملA Fuzzy Group Forecasting Model Based on
Many models have been developed to forecast wind farm power output. It is generally difficult to determine whether the performance of one model is consistently better than that of another model under all circumstances. Motivated by this finding, we aimed to integrate groups of models into an aggregated model using fuzzy theory to obtain further performance improvements. First, three groups of l...
متن کاملAn efficient quantum neuro-fuzzy classifier based on fuzzy entropy and compensatory operation
In this paper, a quantum neuro-fuzzy classifier (QNFC) for classification applications is proposed. The proposed QNFC model is a five-layer structure, which combines the compensatory-based fuzzy reasoning method with the traditional Takagi–Sugeno–Kang (TSK) fuzzy model. The compensatory-based fuzzy reasoning method uses adaptive fuzzy operations of neuro-fuzzy systems that can make the fuzzy lo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2004
ISSN: 0898-1221
DOI: 10.1016/s0898-1221(04)90051-x